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The residual entropy for a class of one-dimensional classical 
lattice models 

Leo Slegers 
Instituut voor Theoretische Fysica, Universiteit Leuven, 3030 Leuven, Belgium 

Received 22 January 1988 

Abstract. The zero-temperature limit of the characteristic equation of the transfer matrix 
is derived for one-dimensional classical lattice systems with a finite one-point configuration 
space and finite-range interactions. In this way, we obtain an explicit polynomial equation 
for the residual entropy, which only involves the counting of some specific periodic 
ground-state configurations. We apply the formula to some well known models and compare 
our method with similar calculations in the literature. 

1. Introduction 

In  statistical mechanics, the notion of residual entropy has been investigated in several 
contexts. First, a non-vanishing residual entropy violates the third law of thermo- 
dynamics and hence this fact alone asks for an explanation. Second, it occurs in the 
study of the magnetic ordering of certain heavy rare-earth metals (see later). Third, 
a non-zero residual entropy implies a large degeneracy of the ground state, which is 
also encountered in spin glasses, the common mechanism being the frustration present 
in the system. Let us look closer at these points. 

The thermodynamical entropy is a state function and can only be measured 
experimentally u p  to some additive constant. The third law fixes this constant for a 
system by making it zero at zero temperature. The corresponding quantity in statistical 
mechanics is properly defined as a functional on the states which measures their 
randomness or lack of information content. Roughly, it counts the number of micro- 
scopic configurations compatible with some macroscopic constraints, mostly the con- 
stant energy. The maximal value s( T )  of the entropy density at temperature T deter- 
mines the equilibrium state and the residual entropy is the limit of s(  T )  for T tending 
to zero. Here, the entropy functional is made unique by requiring that, for infinite 
temperature, it should coincide with the original Boltzmann definition, i.e. if a particle 
at one lattice point can be in q different states, then the infinite-temperature entropy 
density equals In q. Therefore, the zero-temperature entropy density is not necessarily 
zero, but if it is not it should give information about the ground-state degeneracy. But 
counting configurations with a fixed energy can be done only for finite volumes, which 
are taken to infinity afterwards. Hence, a problem may arise about the exchange of 
thermodynamical and zero-temperature limits. This situation was clarified by Aizenman 
and Lieb [ l ]  who proved for the kind of systems that we consider (classical lattice 
models with finite-range interactions) that 
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where N , (  b,)  denotes the ground-state degeneracy in the finite volume A with boundary 
condition b,.  So the residual effects of the finite-temperature equilibrium states are 
completely recovered by considering only the finite-volume ground-state degeneracy, 
but then the largest one for all possible boundary conditions. We remark that, to have 
a non-vanishing residual entropy, the ground-state degeneracy has to diverge exponen- 
tially with the volume. 

In this paper, we restrict ourselves furthermore to one-dimensional systems, which 
enables us to derive more explicit results. Indeed, our main result is that the residual 
entropy is equal to the logarithm of the largest root of the equation 

where p = q n - ' ,  q is the number of configurations per lattice point, n is the range of 
the interaction and  cJ,k is the number of possible sets consisting o f j  infinite ground-state 
configurations which are periodic with periods p I  ( i  = 1,. . . , j) that add  up  to E:=, p ,  = 
k s p ,  and which satisfy an  additional constraint (see theorem 4.2). The strength of 
this result is that only (some of) the periodic configurations with lowest energy have 
to be considered. If there is only one such configuration, say with period k, then (2) 
reduces to p p  - p P - k  =0,  with largest root po= 1, so the residual entropy equals 
In po = 0. If there are two such configurations with periods k ,  and k z ,  (2) becomes 
p p  - p p - k l -  pP-k, = 0, which can have zeros strictly larger than one, and hence a 
non-vanishing residual entropy. 

This situation typically occurs in systems which have different ground states for 
the coupling constants (or external field) belonging to different regions of the parameter 
space. For critical values of the parameters, two or more (periodic) ground states have 
the same energy and they coalesce, generating an  infinite multitude of (non-periodic) 
ground states. Examples are given by some heavy rare-earth metals such as cerium 
and uranium monopnictides which have complicated phase diagrams with lots of 
different magnetic phases [2-51. They all have a very anisotropic periodic layered 
structure: a strong ferromagnetic interaction within each layer and  weaker ferro- and  
antiferromagnetic couplings between the layers. All spins in one layer are parallel but 
the direction differs from one layer to another. Their experimental measured phase 
diagram (for low temperatures) is very similar to the computed phase diagram of the 
one-dimensional model with Hamiltonian (for one layer, that with index zero): 

with U, = i l ,  where the Jk may slightly depend on temperature to explain the phase 
transition from one periodic state to another. All these considerations are heuristic, 
but the low-temperature behaviour of the simplified model (3) can be treated rigorously. 
In  this paper, we calculate its residual entropy and  compare it with results based on 
formula (1) [6-81 and for the most studied case h ( u )  = + ( l / n )  U U n r  weconstruc- 
ted the full equilibrium state in the zero-temperature limit in [9]. 

The frustration present in these systems for critical values of the parameters has 
also been proposed as a basic mechanism in spin glasses [ 10, 113. Although there is 
certainly no spin-glass transition, because the one-dimensional models we consider 
are deterministic and have finite-range interactions [ 121, the frustration can be studied 
on its own and the Parisi spin-glass order parameter can be calculated rigorously [ 131, 
using the same transfer-matrix formalism as we d o  in the following. 
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We proceed as follows. First we define the transfer matrix and  explain what can 
be done with it. Because this technique has been developed for finite temperatures, 
we then derive the equation for the finite-temperature entropy density. In  the next 
section, the limit T - 0  is taken and in the last section the resulting formula ( 2 )  is 
applied to some well known models. 

2. Transfer matrix 

We work immediately in the infinite-volume formalism (see, e.g., [14]). With each site 
j E Z is associated a copy K, of the set K = {0, 1 , .  . . , q - l}. A state p of the system 
is a probability measure on the set of all infinite configurations = II,,,K, ; it is 
described by a family of density distributions, i.e. for any finite volume hc Z, there 
exists a non-negative function p ,  on K ,  = IIJE, K, such that Z y E  K ,  p , ( x )  = 1 and for 
all I\'?& P , ( X ) = ~ , ~ K ,  , P , ( x , Y ) .  

The entropy of p in the finite volume A c Z is defined as 

S , ( p ) =  - c P , ( X )  I n p , ( x )  
r e K ,  

and its entropy density as 

1 
s ( p )  = lim - S , ( p ) .  

j t z  IAl 

The entropy density always exists for a translation-invariant state p, i.e. a state with 
densities satisfying p ,  0 T,,, = p7,( for all a E Z, A c Z where T,  is the space translation 
( T , x ) ,  = x,,, for all i, a E Z, x E fl. It can also be proved for any such state p that 
0 s s ( p )  s In q. 

A translation-invariant interaction of range n is given by a function h on K ". The 
local Hamiltonian for an  interval [ a ,  b ] ,  b - a > n, is then defined by 

H [ a . h ] ( X )  = c h ( ( T t X ) ( l , n ] )  
a - l s i s h - n  

where x ~ , , , ]  denotes the part of length n of the infinite configuration x, starting at site 1. 
For any translation-invariant state p, the energy density 

1 
4 p )  = lim - c p , ( x ) H , ( x )  

iyz /hi X E K ,  

always exists and its free-energy density at inverse temperature p is defined by 

1 
f p ( P )  = e ( p )  -- S ( P ) .  (4) P 

A state is called an equilibrium state at inverse temperature P if it minimises the 
functional f,. It is well known for the kind of systems that we consider that the 
equilibrium state pp at inverse temperature P is unique and satisfies Pfp(p,) = -In A, 
where A, is the largest eigenvalue of the transfer matrix L, (see, e.g., [14]). The 
(Ruelle-Araki) transfer matrix L, for an interaction h ( x ,  , . . . , x,) of range n acts on 
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functions 4 on K , l , , - , l  as 

( L p 4 ) ( x z , . . . , x n ) =  c k, (Xl , . . . ,Xf l )~(X,  , . , X n - l )  
~ I E K I  

where k p ( x l , .  . . , x,) = exp[-ph(x,,  . . . , x,)]. Also the equilibrium state itself can be 
obtained from the transfer matrix [ 151. If 4, and 4, denote the positive eigenfunctions 
of L,, respectively L?j belonging to A,, then the density distributions P [ Q , ~ ]  with b - a  > n 
are given by 

We remark that L, is the ( n  - 1)th root of the usual (Kramers-Wannier) transfer matrix 
TB which is defined by 

3 ,4 (XI , .  . * , x , ) =  c ~ ~ P ~ - ~ ~ ~ l , 2 f l l ~ ~ l , ~ ~ ~ , ~ f l ~ ~ l ~ ~ ~ ~ , ~ ~ ~ l 4 ~ Y , , . ~ ~ , ~ f l ~ .  
I I I,.. , v , ,  ) E  K [ , , , , ]  

The choice to work with L, looks rather innocent but 'it should be observed that the 
calculation of the residual entropy as the zero-temperature limit of the first derivative 
of the corresponding free energy for n > 2 is practically futile, for such a calculation 
requires analysis of a n  eigenvalue problem of order 2"' for the transfer matrix 2, 
(quoted from [8]) whereas this is exactly what we d o  for L,. This is possible because 
the matrix of L, contains so many zeros in contrast with that of 2,. 

Before we start with the calculation of the residual entropy, we give the strategy 
that we follow. For any real number a, we can rewrite (4) for the equilibrium state 
PP as 

s(p, ) = P ( e(p, 1 - a 1 + aP + In A,. (5) 

First, we show that there exists an a. such that In pp = aoP +In A, has a finite limit 
for p +cc and we will write down explicitly the polynomial for which po= lim,,,p, 
is the largest root. Since s(p,)  is uniformly bounded in P, it  follows from (5) that 
limp,,e(pp) = cyo. Hence a. is the ground-state energy density. As a by-product of 
the proof, we find that there exists at least one periodic configuration in which the 
ground-state energy density a. is attained. Finally, we will argue that e ( p p )  converges 
exponentially fast to a. such that limp-&( e (pp )  - ao) = 0 and we can conclude that 
the residual entropy lim,,,s(p,) exists and  equals In po. 

3. The equation for the finite-temperature entropy 

If K = {0,1,  . . . , q - 1) is the configuration space per point, the function 4 ( x , ,  . . . , x , -~ )  
with x, E K ,  i = 1 , .  . . , n - 1, can be represented by a p-component column vector, where 
p = q" - ' .  We order the components from top  to bottom according to the numerical 
value represented by their variables in the numerical system with base q (therefore we 
count from 0 to q - 1 instead of from 1 to q ) :  the first component starting from the 
top is @ ( O ,  0, .  . . , O ) ,  the second 4(0,0, .  . . ,0 ,  l ) ,  etc, with the last one 4 ( q  - 1, q - 
1 , .  . . , q - 1 ) .  This fixes a basis in which L, is represented by a p x p  matrix M ,  which 
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1; * 
* 

can be easily seen to be of the following form: 
r * ... * 

* * * 

* * * 
* * ... * 
* * * 

* * * 
... 

* * * 
* * * 

* * ... * - * ... * L.i - 

* 
* 
* 

A - A I =  

* 

-u , -A 0 0 0 ag 0 0 0 -  
a1 - A 0  0 U, 0 0 0 
0 U? -A 0 0 U,, 0 0 
0 U,  0 -A  0 U , ,  0 0 

0 0 a, 0 -A 0 a,z 0 * 

0 0 U S  0 0 -A a13 0 
0 0 0 a6 0 0 -A (114 

- 0  0 0 U, 0 0 0 u , , - A -  

* 
* 

... * 
* 

* 
... * 

* 

* * * 
... 

* * * 
* * * 

- 
4 

The stars stand for the non-vanishing elements k,(x,, . . . , x,) and each row and column 
contains q such elements. Their ordering is again according to the numerical value 
of their arguments in the system with base q:  in ascending order from the left top 
downwards and if one arrives at the bottom line, continuing with the element in the 
top line one column to the right, etc. So the first element is k,(O, . . . , 0) and, in general, 
one can easily check that the element kp(x l ,  . . . , x,) is situated on the crossing of the 
(xIxz . .  .x,-,)th column with the (x2x3..  . .x,)th row. 

The idea of how to calculate det( M ,  - A I) is simple but requires some new notions. 
We start from the definition. The determinant of a r x r matrix A = (a,) is given by 



3494 L Slegers 

choose a , ,  then we cannot take - A  any longer in the second row; this -A,  however 
also belongs to the second column, such that there a2 (or a,) has to be taken; but then 
the -A in the third (or fourth) row and column is forbidden and  we are forced to 
choose between a4 and a, (or a6 and a,). In any case, a ,  will not appear in the 
coefficient cb since every coefficient that contains a , ,  necessarily contains two other a, 
and so does not have enough space left for six times -A. We try the next possibility: 
take a,, so a4 (or a 5 )  and hence also a8 or  a, (or a,, or a , , ) .  Again we obtain too 
many a,. It also becomes clear that we can better invert our search. If we have to 
check all a,, we can do it systematically as well. In this way we get several loops 
traversing the matrix. If this loop closes after visiting r different elements, we found 
a coefficient of As-’. A possible loop starting from a , ,  is, e.g., 

( 7 )  

This loop has length five, such that det(A-AU) contains the term *U,U3a6a]2a,h3. 
Can we deduce a rule from this about what is special about the elements (7)? A 

closer look shows that the structure of the matrix allows only two types of transitions: 

a, + a3-, as’ a,, -$ a8 + a , .  

ak + a(2k+l lmod16.  

If we write this in the binary system, the underlying rule becomes clear. One has 
ak = a(xIx,xJx4) with xi =0,  1. The operation k + 2 k  corresponds to xlx2x3x4+ 
xIx2x3x40, and modulo 16 means deleting the first digit (x,x2x,x40)mod16 = x2x3x40. 
The second possible transition is xIx2x3x4+ x2x3x41. Summing up, (8) corresponds to 
the operation 

a(xIx2XJx4) + a(x*x3x4x5?. (9) 

Repeating this k times, we obtain a contribution 

To be a coefficient of A P - ‘ ,  it has to satisfy extra conditions. To formulate these, we 
put all x,, occuring in ( lo ) ,  in one configuration of length k+3 :  

~ X ~ ~ X Z ~ ~ 3 ~ X 4 ~ X 5 r ~ ~ ~ ~ ~ ~ k - l ~ ~ k t x h + l ~ ~ k + 2 ~ ~ k + 3 ~ ~  (11) 

Four successive x, from this configuration will be called a 4-window (or  window if no  
confusion is possible). Each window determines one factor of the product (10). The 
operating (7 )  corresponds to moving the window over the configuration (11). 

A first condition on (1 1) is that the loop is only closed if the next element to be 
added in (10) equals the first one, i.e. ( x h + , ,  x h + 2 ,  xkf3 ,  &+4) = (x , ,  x,, xl, x4). Second, 
we want the loop to close after applying (9) k times, no more but no less; we cannot 
visit an  element more than once. This implies that (1 1) should not contain two identical 
windows. 

Since a(xIx2x3x4)= kp(~I,~Z,,~3,~4)=exp[-~h(xl,x~,x3,x4)], the product (10) 
is nothing other than 
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If we define the infinite periodic configuration with period k 
x = (. . .xk-2, XL-1, X I ,  xi, x2, . . , , xk, X I ,  x2, . .) 

then its energy density is equal to 

1 
k =-[h(xl ,  x?,  x3, x4)+h(X2r x3, x4, x5)+. . .+h(Xk, X I r  x2, x3)1 

which means that the exponent of (12) is kh*(x). The two above-mentioned conditions, 
stated in terms of x, require x to be a k-periodic configuration that contains k different 
windows. Summarising, we have show; that, given such a configuration, det(A - A U )  
contains a term of the form *exp(-pkh(x))AP-k. Are all terms of this form? Do we 
not overcount some terms? What sign do they have? 

Theorem 3.1. The characteristic equation for the transfer matrix L, of the models as 
described in § 2 is given by 

A’+ f A p - k  ( - l ) J  c’ exp(-P r = l  .I k , i ( x ( k , ) ) ) = O  (13) 

where x k [ k , )  x ( k , )  runs over all possible sets of j k,-periodic configurations x(k,) ,  
i = 1, , . . , j ,  modulo translations, which together contain k = C{=, k,, different n- 
windows. 

k 

k = l  ] = I  x ( k i )  x ( k , l  

This statement means the following: let x(  k)  be a configuration with period k containing 
k different n-windows (this is the maximal number of different n-windows a k-periodic 
configuration can have). Then the characteristic equation of L, necessarily contains 
the term -exp[-pkh*(x( k))]A”‘. Furthermore, two periodic configurations x(  k , )  and 
x(k,) with periods k ,  and k2 can also be combined into a term of the characteristic 
equation, at least if they together have k, + k2 different n-windows (again the maximal 
number that a k,- and k,-periodic configuration can have together). This corresponds 
to drawing two loops in the matri; that do notAinterfere. The contribution from these 
two configurations is exp{-P[k,h(x(k,))+ k,h(x(k,))]}. One can continue this pro- 
cedure with more configurations by requiring that the total number of different n -  
windows should always equal the sum of their periods. To avoid double counting, we 
impose the condition ‘modulo translation’: if a configuration x is the translation of 
XI, then only one of them may be taken into account. In fact, the sum Z’ runs over 
sets of j classes [x(k,)]  where the class [x(k,)]  contains the configuration x(k,)  and 
its k, translates. 

Roo$ We have to show, first, that any term in the characteristic equation of L, is of 
the form as in (13), and second, that it can be written in a unique way in this form. 

( a )  We remark that any permutation may be broken up into a product of cycles, 
the sign of the permutation being equal to the product of the signs of the cycles. The 
sign of a cycle is +1 (-1) if it has odd (even) length. So, each term in ( 6 )  splits up 
into a number of factors of the form 

sgn(G)a,,,,,!, ,ar2,7i1 t 2 ) .  . *ar>*7?[l\ I 

where 7; is a cycle of length s. Let an arbitrary term in the coefficient of A p - k  be given 
which is different from zero. Formula (6) implies it to be a product of k elements 
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k , ( x , ,  . . . , x , ) ,  the remaining p - k elements being equal to -A. The permutation 
corresponding to this choice contains at least p - k cycles with one element: every -A 
is located on the diagonal. Let us call 7~ the restriction of the permutation to the 
remaining k elements of the form k , ( x , ,  . . . , x , )  and consider one cycle of length s 
in the decomposition of T. 

We use the two properties deduced from the structure of L, : if  k , ( x , ,  . . . , x , )  
occurs in the coefficient, then also an  element of the form k p ( x 2 ,  x 3 , .  . . , x, ,  x , + , )  
occurs (the argument for general q and n is the same as in the example for q = 2 and 
n = 4 ) ,  and secondly, the element k , ( x , ,  . . . , x , )  is situated in the ( x z x 3 . .  .x,)th row 
and  the ( x I x 2 . .  .x,-,)th column. 

The first fact implies that the s factors k p ( x I , .  . . , x , )  give a contribution 

* fi k p ( x , ,  x , + l , .  . . , = +exp ( -P i h ( x , ,  . . , 
1 = 1  I = I  

where x k + ,  = x ,  for i = 1 , .  . . , n - 1. The sum in the exponent is s times the energy 
density of the infinite s-periodic configuration: 

x =  (. . . X y - 2 ,  X 1 - l ,  x , ,  XI ,  x 2 , .  . . , x , ,  XI ,  X I . .  . ). 
To be sure that no element is visited more than once, the condition is imposed that 
x ( s )  has precisely s different n-windows. 

If the column numbers of the s elements in the matrix L, are given by 
x l x z . .  . x n - l ,  x 2 x 3 . .  . x , , .  . , , xkxk+] . . . X,,+k-2 

then, according to the second rule, the corresponding row numbers are, respectively, 
X2X3 . . .  X,,X3 . . .  X,+l , . . . ,  Xk . . .  X,+h-2,Xk+l . . . X , + k - I ~ X i X Z . . . X , - I  

since Xk, ,  = x ,  for i = 1 , .  . . , n - 1. But this is nothing other than a cyclic permutation 
with sign (-l)’+’. 

Hence, x ( s )  yields a contribution ( - l ) ’ + ’  exp[-psh*(x(s))]. If the permutation T 

consists of j cycles T,  with, respectively, length k , ,  then the total contribution to the 
coefficient of (-A)”-’  is equal to 

where the x ( k , )  are k,-periodic configurations with together k =I;:=1 k, different n -  
windows. We obtain (13) after divividing the whole term by (-1)”. 

( b )  Given a set of j k,-periodic configurations x ( k , )  with k = I ; : j = ,  k, different 
n-windows. If W,, (x )  = { ( ~ ~ X ) ~ ~ , , ~ ~ U  EZ} denotes the set of all n-windows of the 
configuration x,  then we define W = U { = ,  W , ( x ( k , ) ) .  This W determines a set of k 
elements k , ( x ) ,  X E  W. The question is whether these k elements (and  hence the set 
W )  can be obtained from another set of j ‘  k:-periodic configurations x ( k : )  with Z:=, 
k :  = k and U:=l W , ( x ( k : ) )  = W. But this is clearly not possible-to represent a non- 
vanishing term in the determinant, the set W has to define a permutation T as follows: 
if ( x , ,  . . . , x , )  E W ,  then x I ,  . . . x n - l  = T ( x > . .  . x , ) .  If this permutation can be found, it 
is unique. Moreover, the decomposition of a permutation into cycles is unique and a 
cycle determines a unique infinite periodic configuration up  to translations. Hence, 
the sum over all non-zero terms is a sum over permutations or over sets of cycles or  
over sets of periodic configurations modulo translations. 
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4. The residual entropy 

We will analyse formula (13) in the limit as p + W .  Let X denote the set of all periodic 
configurations with period k smaller than p and containing k different n-windows, it 
is clearly a finite set. Put ao= min{h*(x) Ix E X } .  To study the behaviour of (13) for 
large p, we substitute A = pexp( -aoP) and divide (13) by exp( -paop) .  Then we obtain 

P p ( p ) = p p +  f pP-k  f (-l)J 

This equation splits up into two parts: P p ( p )  = P o ( p ) +  P p - ( p )  where 

exp(-P t = l  k,[h*(x(k,))-a,])=O. 
k = l  J = I  r ( k , l  r ( k , )  

is a polynomial in p independent of p and P p - ( p )  is a polynomial in p of degree 
strictly less than that of Po(p j and with coefficients which are all strictly exponentially 
decreasing in p. 

Lemma 4.1. If pp denotes the largest root of P p ( p )  and po that of P o ( p ) ,  then limp-=pp 
exists and is equal to po,  the convergence going exponentially fast. 

Proof: First, we show that pp is uniformly bounded in p. Indeed, suppose that there 
is a sequence pk,  k = 1,2 , .  . . , such that limk+,=+ph = W. Then, dividing the equality 
PO(p,,)+Pp,-(pp,)=O by p i l  and taking the limit k + W  would certainly lead to a 
contradiction since the degree of Pp- is strictly less than that of Po. Now, the same 
equality with pp uniformly bounded implies that there exist constants K and c > 0 
such that IPo(pp)( S Kexp(-cp). Together with the fact that p p  is continuous in p for 
p finite (see, e.g., [16]), this means that for all p large enough, p, is arbitrarily close 
to one of the zeros of Po, say p. In fact, taking smaller and smaller neighbourhoods 
around /I, one sees that limp-= pp exists and equals ti. Moreover, for any a > 0, there 
exists a constant K '  such that I P p ( p )  - Po(p)l  < K '  exp(-cp) for all p, lpl< po+a. 
Hence, Pp must have a zero closer and closer to pa as p +CO. This is only possible if 
pa= p =lim,,,pp. Finally, from the inequality IPo(po) - Po(p,)I < K exp(-cp), the 
exponential convergence of pp can be deduced. 

Theorem 4.2. Let h be a Hamiltonian as described in § 2 with range n and q configur- 
ations per point. Let G denote the set of all periodic configurations which have a 
period smaller than p = q n - l ,  the number of different n-windows equal to their period 
and which have minimal energy density. Then the residual entropy of this model is 
equal to the logarithm of the largest root of the equation 

where c ~ , ~  is the number of all possible sets of j configurations x ( l ) ,  . . . , x ( j )  E G 
modulo translations such that the sum of their periods is k and such that they together 
have k different n-windows. 

Proof: The proof proceeds as indicated at the end of § 2 .  We have already found a 
number a0 such that In pc( = aoP +In A, has a finite limit for p + 00 and because of 
lemma 4.1, the polynomial for which p0=  limp,,pp is the largest root is given by (14) 
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or equivalently by (15). Hence, the only thing that remains to be proved is the 
exponential convergence of the energy density to the ground-state energy density. This 
follows from the facts that Ap = exp(-a,P)pp, with pP converging exponentially fast 
in P, and that M p  contains only exponentials in p. Indeed, they imply that the solutions 
& and GP of (MP-Ap)c$P = O  and ( M Z - A p ) G p = O  and hence also pp and e ( p ) =  
X y  p P ( x ) h ( x )  are fractions of linear combinations of exponentials in p and powers of 
p p .  But we already know that l imp+= e ( / 3 ) = a 0 ,  so one necessarily has e @ ) =  
(ao+ Pl(/3))/(l + P 2 ( p ) )  with Pl(j3) and P 2 ( p )  exponentially decreasing functions in 
P. This completes the proof since e ( p )  - cyo = ( Pl(P) - a O P 2 ( p ) ) / (  1 + P , ( P ) )  converges 
exponentially fast to zero. 

Corollary 4.3. (i) If there is only one periodic configuration with the lowest energy 
density, say with period k, then (15) reduces to p p  - p p - k  - - 0 with largest root po = 1. 
So the residual entropy in this case is zero. 

(ii) All models with the same interaction range and configuration space per point 
which have the same periodic ground-state configurations also have the same residual 
entropy. 

(iii) It follows from the proof, whether the residual entropy is zero or not, that 
there always exists at least one periodic configuration with period p '  smaller than p 
and with p '  different n-windows, whose energy density is equal to the ground-state 
energy density. 

(iv) If Y denotes the set of all translation-invariant states, then the number a. equals 

a ,  = min{e(p)(p E T}. 

Indeed, since the equilibrium state pP satisfies the variational principle (see, e.g., 
[ 14, 15]), i.e. 

f P ( P P 1  < f p ( P )  V p E  3 

we get, rewriting (4), that 

1 
e ( P p ) s  e ( P ) + - ( s ( P p ) - s ( P ) )  V P E  3 

P 
But the entropy density is uniformly bounded in p, such that we obtain 

a. = lim e ( p P )  s e ( p )  v p €  5. 
1 3 - r  

On the other hand, given a k-periodic configuration z with energy density 6(z )  = a,, 
one can easily construct a translation-invariant state p with the same energy density 
by taking for its density distributions 

Remark 4.4. All configurations in the set G of theorem 4.2 are ground-state configur- 
ations. A ground-state configuration is, by definition, a configuration x E K " ,  which 
is stable under local perturbations [ 13, i.e. VA E Z, V y  E K" with y , ,  = x, ' ,  
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We prove the statement by contradiction. Let x E G and  assume there exists a '1 E Z 
and a y E K" such that x , a  = y , ,  and H, , ( y ,  ) < H,.(x,,), V A ' z  A. for some ,do large 
enough. Now, define the configuration 2~ K" which is the periodic continuation of 
.v ,~,  i.e. for which Z,o = y,,, is one period. Then the translation-invariant state construc- 
ted from 2 has the same energy density as X which is strictly smaller than a", in 
contradiction with corollary 4.3. 

5. Application 

One of the simplest models with non-vanishing residual entropy is that with Hamil- 
tonian 

1 
n - 1  

h,(x,, X?,  . . . , X") = -x,x,+- XIX, x, E {-1, 1). (16) 

The case n = 3 was solved by Stephenson [6] and  has residual entropy In [(1+&)/2]. 
Redner [7] proves, using (1) for free boundary conditions, that the residual entropy 
for the general case is equal to In po where po is the largest root of p:-l = 1. 
According to ( l ) ,  this is a lower bound, but it turns out to be exact. In fact (16) is a 
special case of the more general class of models with a critical field 

h J , ( x , ,  x2,. . . , x,) = -x1x2+Jx,x, - H x ,  

with H = 2[5 - l / ( n  - l ) ]  > 0. Again, counting ground-state configurations with 
periodic boundary conditions, HajdukoviC and MiloSeviC [8] find for h;  the same 
residual entropy as Redner did for the model hz,. 

These models illustrate very nicely how a large frustration may be caused by 
competition between several interactions. To determine the ground-state configur- 
ations, we follow the discussion of [8]. 

If J < l / ( n  - l ) ,  the antiferromagnetic interaction (second term) is too weak to 
compensate the ferromagnetic one (first term), so there will be a ferromagnetic ground 
state in the direction of the field. 

If J >  I / (  n - l ) ,  the antiferromagnetic tendency wins and we can use the field H 
to control the ground state. If the field is weak, i.e. H < 2 [ J - l / ( n - l ) ] ,  it cannot 
compensate the antiferromagnetic interaction and there will be an ( n  - 1)-fold degener- 
ate ground state with configurations consisting of domains of n - 1 parallel spins which 
are alternately aligned up  and down. If H > 2[J  - l / ( n  - l ) ] ,  the field is too strong: 
the ground state is ferromagnetic in the direction of the field. Only if H = 
2[5 - l / ( n  - l)], both types of ground states (ferromagnetic and antiferromagnetic) 
have the same energy density together with all configurations consisting of domains 
of parallel spins which point alternately up  and down; the domains of spins pointing 
down still have length n - 1, but the domains of spins aligned u p  may have any length 
greater than or equal to n - 1. 

Finally, if J = l / ( n  - l ) ,  no field is needed to balance both tendencies. Here, there 
are two ferromagnetic and  n - 1 antiferromagnetic configurations with the lowest energy 
density and  with them all being configurations consisting of domains of at least n - 1 
parallel spins. 

Now, the strength of our result is clear: we only have to consider the periodic 
configurations (up  to translations) and moreover only those with different n-windows. 
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For the models with non-vanishing field, there are only three of them: the ferromag- 
netic one xf with period 1 (all spins up), a first antiferromagnetic one xAI with period 
2(n - l ) ( n  - 1 spins up followed by n - 1 spins down, etc) and a second one x,, with 
period 2n - 1 ( n  spins up followed by n - 1 spins down, etc). More than n neighbouring 
spins pointing up would give rise to equal n-windows. For the same reason, xf and 
xaL cannot be combined in the equation for the residual entropy: only xf and x,, can. 
This gives 
p p  + (-l)IpP-I + ( - 1 ) ’ p ’ n - I ’  +[( - l ) I +  (-1)2]pp-2n+i 

l )=O.  ? ( n - l )  - 2 ( n - l  ) - I  - 
= Fp-Zn+2(CL” 

In the special case J = 1/(  n - l ) ,  the spin-flip symmetry is restored and there are 
two ferromagnetic configurations xrl (all spins up) and xf, (all spins down) and four 
antiferromagnetic ones. 

xaI with period 2(n - 1): n - 1 spins up, n - 1 spins down, etc. 
x,? with period 2n - 1: n spins up, n - 1 spins down, etc. 
x,, with period 2n - 1: n - 1 spins up, n spins down, etc. 
x,, with period 2n: n spins up, n spins down, etc. 
To have different n-windows, the following combinations are allowed: 

Xf, + Xf2, Xr, + Xa,, Xr2 + Xa,, Xf, + Xa3 ’  xrz + xa2) xf, + Xf2 + xa, 

This gives, for the residual-entropy equation 

pP-2pP-l+pP-2- P p - 2 ( n  - ) + ( - 2  + 2 ) p p - * n + l  + (-1 + 2  - l)pP-’“ 

( p  - I ) * -  11 = p p - 2 1 n - l )  2 1 n - l ) - 2  

- - p p - 2 ( n - 1 ) ( p n - l  

[ P  

- & - 2 +  1 ) ( p  $ - 2 -  1 )  = 0. 

The largest root is that of pn-l  - p n - I  - 1 = 0 as found in [7,9]. 
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